Sensitive Period for a Multimodal Response in Human Visual Motion Area MT/MST
نویسندگان
چکیده
The middle temporal complex (MT/MST) is a brain region specialized for the perception of motion in the visual modality. However, this specialization is modified by visual experience: after long-standing blindness, MT/MST responds to sound. Recent evidence also suggests that the auditory response of MT/MST is selective for motion. The developmental time course of this plasticity is not known. To test for a sensitive period in MT/MST development, we used fMRI to compare MT/MST function in congenitally blind, late-blind, and sighted adults. MT/MST responded to sound in congenitally blind adults, but not in late-blind or sighted adults, and not in an individual who lost his vision between ages of 2 and 3 years. All blind adults had reduced functional connectivity between MT/MST and other visual regions. Functional connectivity was increased between MT/MST and lateral prefrontal areas in congenitally blind relative to sighted and late-blind adults. These data suggest that early blindness affects the function of feedback projections from prefrontal cortex to MT/MST. We conclude that there is a sensitive period for visual specialization in MT/MST. During typical development, early visual experience either maintains or creates a vision-dominated response. Once established, this response profile is not altered by long-standing blindness.
منابع مشابه
Motion opponency in visual cortex.
Perceptual studies suggest that visual motion perception is mediated by opponent mechanisms that correspond to mutually suppressive populations of neurons sensitive to motions in opposite directions. We tested for a neuronal correlate of motion opponency using functional magnetic resonance imaging (fMRI) to measure brain activity in human visual cortex. There was strong motion opponency in a se...
متن کاملClose correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect
Studies in primate physiology and human functional neuroimaging have convincingly shown that the area of the brain termed MT/V5(+)-which includes the middle temporal visual area MT/V5 along with adjacent motion-sensitive areas such as MST--is involved in the processing of motion information [1,2]. Tootell et al. [3] showed that the blood oxygenation level dependent (BOLD) signal measured by fun...
متن کاملNeurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements.
Perception of a stable visual world despite eye motion requires integration of visual information across saccadic eye movements. To investigate how the visual system deals with localization of moving visual stimuli across saccades, we observed spatiotemporal changes of receptive fields (RFs) of motion-sensitive neurons across periods of saccades in the middle temporal (MT) and medial superior t...
متن کاملResponses of MT and MST neurons to one and two moving objects in the receptive field.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field...
متن کاملDistinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements.
In humans, functional imaging studies have demonstrated a homologue of the macaque motion complex, MT+ [suggested to contain both middle temporal (MT) and medial superior temporal (MST)], in the ascending limb of the inferior temporal sulcus. In the macaque monkey, motion-sensitive areas MT and MST are adjacent in the superior temporal sulcus. Electrophysiological research has demonstrated that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010